An optical flat is an Optics-grade piece of glass lapping and polishing to be extremely flat on one or both sides, usually within a few tens of (billionths of a metre). They are used with a monochromatic light to determine the flatness (surface accuracy) of other surfaces (whether optical, metallic, ceramic, or otherwise), by means of wave interference.
When an optical flat is placed on another surface and illuminated, the light waves reflect off both the bottom surface of the flat and the surface it is resting on. This causes a phenomenon similar to thin-film interference. The reflected waves interfere, creating a pattern of interference fringes visible as light and dark bands. The spacing between the fringes is smaller where the gap is changing more rapidly, indicating a departure from flatness in one of the two surfaces. This is comparable to the contour lines one would find on a map. A flat surface is indicated by a pattern of straight, parallel fringes with equal spacing, while other patterns indicate uneven surfaces. Two adjacent fringes indicate a difference in elevation of one-half wavelength of the light used, so by counting the fringes, differences in elevation of the surface can be measured to better than one micrometre.
Usually only one of the two surfaces of an optical flat is made flat to the specified tolerance, and this surface is indicated by an arrow on the edge of the glass. Optical flats are sometimes given an optical coating and used as precision or optical windows for special purposes, such as in a Fabry–Pérot interferometer or laser cavity. Optical flats have uses in spectrophotometry as well.
Testing is often done in a clean-room or another dust-free environment, keeping the dust from settling on the surfaces between cleaning and assembly. Sometimes, the surfaces may be assembled by sliding them together, helping to scrape off any dust that might happen to land on the flat. The testing is usually done in a temperature-controlled environment to prevent any distortions in the glass, and needs to be performed on a very stable work-surface. After testing, the flats are usually cleaned again and stored in a protective case, and are often kept in a temperature-controlled environment until used again.
Many sources for monochromatic light can be used. Most lasers emit light of a very narrow bandwidth, and often provide a suitable light source. A helium–neon laser emits light at 632 nanometres (red), while a frequency doubled emits light at 532 nm (green). Various and diode-pumped solid-state lasers emit light in red, yellow, green, blue or violet. can be tuned to emit nearly any color. However, lasers also experience a phenomenon called laser speckle, which shows up in the fringes.
Several gas or metal-vapor lamps can also be used. When operated at low pressure and current, these lamps generally produce light in various , with one or two lines being most predominant. Because these lines are very narrow, the lamps can be combined with narrow-bandwidth filters to isolate the strongest line. A helium-discharge lamp will produce a line at 587.6 nm (yellow), while a mercury-vapor lamp produces a line at 546.1 (yellowish green). Cadmium vapor produces a line at 643.8 nm (red), but low pressure sodium produces a line at 589.3 nm (yellow). Of all the lights, low pressure sodium is the only one that produces a single line, requiring no filter.
The fringes only appear in the reflection of the light source, so the optical flat must be viewed from the exact angle of incidence that the light shines upon it. If viewed from a zero degree angle (from directly above), the light must also be at a zero degree angle. As the viewing angle changes, the lighting angle must also change. The light must be positioned so that its reflection can be seen covering the entire surface. Also, the angular size of the light source needs to be many times greater than the eye. For example, if an incandescent light is used, the fringes may only show up in the reflection of the filament. By moving the lamp much closer to the flat, the angular size becomes larger and the filament may appear to cover the entire flat, giving clearer readings. Sometimes, a diffuser may be used, such as the powder coating inside frosted bulbs, to provide a homogenous reflection off the glass. Typically, the measurements will be more accurate when the light source is as close to the flat as possible, but the eye is as far away as possible. Optical Shop Testing by Daniel Malacara – John Wiley and Sons 2009 Page 10–12
If the gap between the surfaces is not constant, this interference results in a pattern of bright and dark lines or bands called " interference fringes" being observed on the surface. These are similar to on maps, revealing the height differences of the bottom test surface. The gap between the surfaces is constant along a fringe. The path length difference between two adjacent bright or dark fringes is one wavelength of the light, so the difference in the gap between the surfaces is one-half wavelength. Since the wavelength of light is so small, this technique can measure very small departures from flatness. For example, the wavelength of red light is about 700 nm, so the difference in height between two fringes is half that, or 350 nm, about 1/100 the diameter of a human hair.
where is the peak amplitude, λ is the wavelength, and is the angular frequency of the wave. The ray reflected from the bottom surface will be delayed by the additional path length and the 180° phase reversal at the reflection, causing a phase shift with respect to the top ray
where is the phase difference between the waves in . The two waves will superpose and add: the sum of the electric fields of the two waves is
Using the trigonometric identity for the sum of two cosines: , this can be written
This represents a wave at the original wavelength whose amplitude is proportional to the cosine of , so the brightness of the reflected light is an oscillating, function of the gap width d. The phase difference is equal to the sum of the phase shift due to the path length difference 2 d and the additional 180° phase shift at the reflection
so the electric field of the resulting wave will be
This represents an oscillating wave whose magnitude varies sinusoidally between and zero as increases.
\pi\left({2d \over \lambda} + {1 \over 2}\right) &= n\pi,\quad n \in {0, 1, 2, \ldots} \\
\Rightarrow d &= \left(n - {1 \over 2}\right){\lambda \over 2}
\end{align}
\pi\left({2d \over \lambda} + {1 \over 2}\right) &= \left(n + {1 \over 2}\right)\pi,\quad n \in {0, 1, 2, \ldots} \\
\Rightarrow d &= n{\lambda \over 2}
\end{align}
Thus the bright and dark fringes alternate, with the separation between two adjacent bright or dark fringes representing a change in the gap length of one half wavelength (λ/2).
No surface is ever completely flat. Therefore, any errors or irregularities that exist on the optical flat will affect the results of the test. Optical flats are extremely sensitive to temperature changes, which can cause temporary surface deviations resulting from uneven thermal expansion. The glass often experiences poor thermal conduction, taking a long time to reach thermal equilibrium. Merely handling the flats can transfer enough heat to offset the results, so glasses such as fused silica or borosilicate are used, which have very low coefficients of thermal expansion. The glass needs to be hard and very stable, and is usually very thick to prevent flexing. When measuring on the nanometre scale, the slightest bit of pressure can cause the glass to flex enough to distort the results. Therefore, a very flat and stable work-surface is also needed, on which the test can be performed, preventing both the flat and the test-piece from sagging under their combined weight, Often, a precision-ground surface plate is used as a work surface, providing a steady table-top for testing upon. To provide an even flatter surface, sometimes the test may be performed on top of another optical flat, with the test surface sandwiched in the middle.
The other method for determining absolute flatness is the "three-flat test." In this test, three flats of equal size and shape are tested against each other. By analyzing the patterns and their different , the absolute contours of each surface can be extrapolated. This usually requires at least twelve individual tests, checking each flat against every other flat in at least two different orientations. To eliminate any errors, the flats sometimes may be tested while resting on edge, rather than lying flat, helping to prevent sagging. Handbook of Optical Metrology: Principles and Applications by Toru Yoshizawa – CRC Press 2003 Page 426–428
The interference fringes typically only form once the optical flat begins to wring to the testing surface. If the surfaces are clean and very flat, they will begin to wring almost immediately after the first contact. After wringing begins, as air is slowly forced out from between the surfaces, an optical wedge forms between the surfaces. The interference fringes form perpendicular to this wedge. As the air is forced out, the fringes will appear to move toward the thickest gap, spreading out and becoming wider but fewer. As the air is forced out, the vacuum holding the surfaces together becomes stronger. The optical flat should usually never be allowed to fully wring to the surface, otherwise it can be scratched or even broken when separating them. In some cases, if left for many hours, a block of wood may be needed to knock them loose. Testing flatness with an optical flat is typically done as soon a viable interference pattern develops, and then the surfaces are separated before they can fully wring. Because the angle of the wedge is extremely shallow and the gap extremely small, wringing may take a few hours to complete. Sliding the flat in relation to the surface can speed up wringing, but trying to press the air out will have little effect.
If the surfaces are insufficiently flat, if any oil films or impurities exist on the surface, or if slight dust-particles land between the surfaces, they may not wring at all. Therefore, the surfaces must be very clean and free of debris to get an accurate measurement. Tool and Manufacturing Engineers Handbook by W. H. Cubberly, Ramon Bakerjian – Society of Manufacturing Engineers 1989Page 12-13
If the surfaces are not completely flat, as wringing progresses the fringes will widen and continue to bend. When fully wrung, they will resemble contour topography-lines, indicating the deviations on the surface. Rounded fringes indicate gentle sloping or slightly cylindrical surfaces, while tight corners in the fringes indicate sharp angles in the surface. Small, round circles may indicate bumps or depressions, while concentric circles indicate a conical shape. Unevenly spaced concentric circles indicate a convex or concave surface. Before the surfaces fully wring, these fringes will be distorted due to the added angle of the air wedge, changing into the contours as the air is slowly pushed out.
A single dark-fringe has the same gap thickness, following a line that runs the entire length of the fringe. The adjacent bright-fringe will indicate a thickness which is either 1/2 of the wavelength narrower or 1/2 of the wavelength wider. The thinner and closer the fringes are; the steeper the slope is, while wider fringes, spaced further apart, show a shallower slope. Unfortunately, it is impossible to tell whether the fringes are indicating an uphill or downhill slope from just a single view of the fringes alone, because the adjacent fringes can be going either way. A ring of concentric circles can indicate that the surface is either concave or convex, which is an effect similar to the hollow-mask illusion.
There are three ways to test the surface for shape, but the most common is the "finger-pressure test." In this test, slight pressure is applied to the flat, to see which way the fringes move. The fringes will move away from the narrow end of the wedge. If the testing surface is concave, when pressure is applied to the center of the rings, the flat will flex a little and the fringes will appear to move inward. However, if the surface is convex, the flat will be in point-contact with the surface in that spot, so it will have no room to flex. Thus, the fringes will remain stationary, merely growing a little wider. If pressure is applied to the edge of the flat something similar happens. If the surface is convex the flat will rock a little, causing the fringes to move toward the finger. However, if the surface is concave the flat will flex a little, and the fringes will move away from the finger toward the center. Although this is called a "finger" pressure test, a wooden stick or some other instrument is often used to avoid heating the glass (with the mere weight of a toothpick often being enough pressure).
Another method involves exposing the flat to white light, allowing rainbow fringes to form, and then pressing in the center. If the surface is concave, there will be point-contact along the edge, and the outer fringe will turn dark. If the surface is convex, there will be point-contact in the center, and the central fringe will turn dark. Much like tempering colors of steel, the fringes will be slightly brownish at the narrower side of the fringe and blue on the wider side, so if the surface is concave the blue will be on the inside of the rings, but if convex the blue will be on the outside.
The third method involves moving the eye in relation to the flat. When moving the eye from a zero-degree angle of incidence to an oblique angle, the fringes will appear to move. If the testing surface is concave, the fringes will appear to move toward the center. If the surface is convex, the fringes will move away from the center. To get a truly accurate reading of the surface, the test should usually be performed in at least two different directions. As grid lines, the fringes only represent part of a grid, so a valley running across the surface may only show as a slight bend in the fringe if it is running parallel to the valley. However, if the optical flat is rotated 90 degrees and retested, the fringes will run perpendicular to the valley and it will show up as a row of V- or U-shaped contours in the fringes. By testing in more than one orientation, a better map of the surface can be made. Optical Shop Testing by Daniel Malacara – John Wiley and Sons 2009 Page 5–9
|
|